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1 INTRODUCTION 

After completing a small Ada pilot project (OCC simulator) for the 
Multi Satellite Operations Control Center (MSOCC) at Goddard last 
year, we recommended the use of Ada to develop OCCs. 

To help MSOCC transition toward Ada, we recently developed a suite of 
about 100 evaluation programs which can be used to assess Ada 
compilers, namely: 

o Compare the overall quality of the compilation system (e.g., 
ease of use, complexity, impact on the host computer, error 
message quality). 

o Compare the relative efficiencies of the compilers and the 
environments in which they work (e.g., how long does it take 
to compile and link a program?). 

o Compare the size and execution speed of generated machine 
code. 

Another goal of the benchmark software was to provide MSOCC system 
developers with rough timing estimate for the purpose of predicting 
performance of future systems written in Ada. 

2 SUITE DESCRIPTION 

Two types of benchmarks were created, "statictf and "dynamictt. Static 
benchmarks are used to assess the extent to which a compiler helps (or 
hinders) the software development effort. Dynamic benchmarks measure 
the efficiency of machine code generated by Ada compilers. 

The Ada evaluation suite was developed in about 4 man-months on a 
Digital Equipment Corporation (DEC) VAX-11/785 using the DEC Ada 
Compilation System (V1.0) running under the VMS operating system 
(V4.2). The evaluation suite source was then ported from the VAX to a 
Data General Corporation (DG) MV/4000 via magnetic tape. The software 
was rebuilt on the MV/4000 using the DG Ada Development Environment 
(V2.3) running under the AOSIVS (V6.3) operating system. 
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2.1 Static Benchmark Programs 

Two general classes of static evaluation programs were generated. The 
first set of programs measures the time to compile various Ada 
constructs such as: 

o A null program to measure the minimum overhead. 

o 

o A program translated from Reference 2, dealing with stride 

A program instantiating INTEGER - IO. 

and non-stride array references. 

o The DHRYSTONE synthetic benchmark program from Reference 3. 

A compilation command procedure automatically measures the compile 
time for every program of the benchmark suite. 

The second set of static benchmark programs contain deliberately 
induced errors in the source code. They are used to subjectively 
evaluate how well compiler messages help the programmer identify some 
common mistakes such as: 

o Incorrect dereferencing of an object in a procedure call. 

o Confusing type and subtype declarations. 

o Common typos (missing "--" and ";", reference to a misspelled 
variable, etc.) 

o Forgetting to qualify items from "withed" packages. In this 
case, a good message should mention the right package(s). 

2.2 Dynamic Benchmark Programs 

The dynamic benchmark programs measure the run time overhead 
following Ada features: 

for the 

I - Control structures (CASE, IF-THEN-ELSE, LOOP). 

- 
- Procedure call overhead (including calling another language 

Assignment statements including ACCESS types. 
, 

from Ada). 

1 - Dynamic memory allocation. 
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- Sequential IO. 

- Rendezvous (inter-task communication) and task activation. 

- Using multi-tasking to overlap IO with CPU intensive 
processing. 

- Array referencing (stride and non-stride). 

The chosen limited set of tests concentrates on the Ada language 
features that are vital to MSOCC. However, the benchmark methodology 
and the benchmark code structure provide a good framework to easily 
create new benchmarks as the need arises. 

An averaging technique is used to smooth the effects of random system 
events that can be minimized but not eliminated from the 
multi-programming environment. A llnullll loop is timed for several 
iterations to compute the overhead for the loop. The ADA construct to 
be benchmarked is then timed inside the same loop. The null loop time 
is subtracted from the time of the loop containing the Ada construct, 
and the result is divided by the number of iterations to produce the 
time for one execution of the ADA construct. All timing is performed 
using the CALENDAR.CLOCK routine. 

A command procedure automatically logs all sysgen parameters as well 
as the main process parameters (quotas, working set, etc.) before 
running all tests with a programmable number of iterations. Timing 
results are computed internally by every benchmark program and logged 
in individual files (one such file per test). 

2.2.1 Parallelism Test Programs Description 

The programs that test the overlapping of input, output and CPU 
processing with tasking warrant a more detailed discussion: 

2.2.1.1 PAR BIG - 
This program instantiates the SEQUENTIAL IO package for a file of big 
record size (10 000 bytes per block) aEd reads, processes and writes 
several records , overlapping sequential access input , CPU intensive 
"processingll and sequential access output by using Ada tasking with 
rendezvous. The overall run time should be compared to the overall 
run time for SER - BIG described below. 

If the compiler correctly implements the Ada tasking paradigm, the 
processing task should be able to run while the I/O tasks are blocked. 
Therefore, PAR BIG should run faster than SER BIG provided that the 
rendezvous overhead is acceptable. 

- 
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2.2.1.2 SER - BIG 

This program instantiates the SEQUENTIAL IO package for a file of big 
record size (10 000 bytes per block) 70 serialize sequential access 
input, CPU intensive "processing" and sequential access output in a 
loop. 

2.2.1.3 

The same principles were applied to a file of nascom blocks (600 
bytes). However, because modern operating systems very efficiently 
buffer the data during sequential IO operations, the efficiency 
advantage of tasking may be small (or non existent) for this test. 

PAR - NB And SER - NB 

2.3 Code Optimization Issues 

One major concern, when doing simple dynamic benchmarks, is the 
compiler optimizer. Host simple benchmark programs do not do any 
reasonable work. One must be careful that the optimizer does not 
recognize this fact and optimize the construct being benchmarked 
completely out of the program. Even if the construct is still 
present, there is concern as to whether the optimization would have 
taken place in a "real" program to the extent that it took place in 
the simple benchmark (e.g., all variables used in the benchmark ending 
up in registers may not be realistic). 

The DEC Ada Compiler has two optimization switches. One, 
/OPTIMIZE=TIME will automatically treat small subroutines as though 
the INLINE pragma had been invoked. The other, /OPTIHIZE=SIZE 
performs all other optimization but does not do automatic INLINE 
processing. The /OPTIHIZE=TIME switch does not result in automatic 
INLINE processing if the body of the subroutine being called is 
compiled separately. 

We tried a method described in Reference 4 to trick the compiler into 
not performing automatic INLINE processing. We rejected the method 
because it introduced large delays that would have made timing 
measurements of small constructs very imprecise. 

Ye compiled all dynamic benchmarks with and without optimization. 
Where significant differences resulted, the generated machine code was 
examined to determine if the optimizer did its job "too well". In 
such cases, the non-optimized version was used in test runs. 
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3 COMPARING DEC ACS AND DG ADE 

We were guests on both of the host machines and hence, were assigned 
limited resources. Consequently, much effort was spent managing 
resources, particularly disk space. On the ADE we were frequently 
running at reduced priority, relative to all other system users. 

This comparison between the ACS and the ADE is, perhaps, a little 
unfair to the ADE. The VAX-11/785, which the ACS runs on, is about 
twice as fast as the MV/4000 (1.2 MIPS vs 0.6 MIPS). Also, while DG's 
AOSIVS is far superior to many operating systems, we believe that 
DEC's VMS, in general, provides a significantly better software 
development environment. These bias must be taken into consideration. 

4 

All static and dynamic benchmarks were developed on the DEC VAX-11/785 
and ported to the DG MV/4000. There were no cases where the ADE 
failed to compile a program that was successfully compiled the 
ACS. was one instance where the ADE generated incorrect code, 
and one program experienced runtime problems that were never solved. 
Specifically, the following problems were encountered while porting 
the benchmark suite: 

under 
There 

- Due to bad code being generated for an explicit type 
conversion, PAR - NB had to be recoded. 

- PAR - BIG never ran successfully on the MV/4000. 
- File IO and parallel processing programs had to be modified 

on the the MV/4000 because the ADE does not handle 
representation clauses for type trbytetl and generated code for 
32 bit integer instead. 

- An unhandled exception would randomly occur while using a 
program (written in Ada) to unpack records from files that 
had been transferred to the DG. The problem would go away by 
rerunning the program with exactly the same input file. 

The following additional subjective comparisons can be made: 

1. Both systems use a lot of resources. The ADE makes 
extravagant use of disk space and is also a CPU hog. 

2. The MV/4000 text editor (SED) didn't seem as friendly as the 
VAX's (EDT). This may have been due to lack of DG experience 
on the part of the evaluators (we did not know how to use 
SLATE). 

As a rule, setting up command files to build and run things frequently 
took an order of magnitude longer on the MV/4000. 
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3.1 Static Evaluation 

3.1.1 Compilation Times 

ACS and ADE compilation times for a subset of the benchmark suite are 
compared in Figure F.3.3-1. For the sample, the ACS performed better 
even if we allow for the difference in processor speeds. Differences 
in the time required to perform disk IO is an additional, hard to 
quantify factor. 

The entire benchmark suite was compiled and linked in less than 40 
minutes on the ACS and in about 3 hours on the ADE. 

COMPILE TIME 
(seconds) 

Benchmark ACS (VAX 11-785) ADE (MV/4000) 

COMP NULL 
COHP-COMMENTS 
COHP-INT IO 
COMP-TEXT - - IO 

MODUL~ BYTE 

SUE CALL-o - 
PAR-BIG - 

ARRAY REF 

RV A R 6 Y  100 

6 
5 
11 
7 

31 
28 
20 
18 
69 

24 
32 
65 
20 

142 
92 
94 
105 
264 

Figure F.3.3-1, A Sample of Compilation Times. 

3.1.2 Error Messages 

Even though the ACS compile time messages were verbose at times, their 
relevance and clarity were judged superior to those of the ADE. 

In particular, the ACS makes generally good suggestions (adding 
missing semicolons, guessing package name for missing qualification, 
etc.) whereas the ADE suggested that a derived type was intended when 
the problem was a confusion between type and subtype declarations. 
This kind of suggestion can greatly confuse the novice programmer. 
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3.2 Dynamic Evaluation 

, 

Overall, the DEC ACS produced more efficient code than the DG ADE. 
The rest of this section compares execution speeds for several classes 
of benchmarks. 

3.2.1 Common Features 

Figure F.3.3-2 shows the measured run time for the most common Ada 
constructs. 

CONSTRUCT 

Control 
3 CASES 

10 CASES 
IF/THEN/ELSE 
FOR LOOP (optimized) 

Assignments 
VARIABLE := VARIABLE 
ACCESS VARIABLE := VARIABLE 
VARIABLE := CONSTANT 

VARIABLE := CONSTANT 

VARIABLE := CONSTANT 

(CONST < 2**8) 

2**8 < CONST < 2**16 

(CONST > 2**16) 

Synthetic benchmark 
DEIRY STONE 

ACS/ADE OVERHEAD 
(microsec) 

average low high 

2.611.5 2.6/0.8 2.6/1.9 
2.9/1.3 2.9/1.3 2.9/1.6 
4.6/1.6 4.4/1.6 4.7/1.6 
1.516.0 1.5/6.0 1.7/6.0 

0.713.4 0.613.4 0.7/3.5 
3.015.4 3.0/5.0 3.2/5.4 

0.712.6 0.7/2.6 0.8/2.6 

1.1/2.6 1.W2.5 1.3/2.6 

1.0/2.9 0.9/2.9 1.1/2.9 

1.3/4.6 1.W4.6 1.7/4.6 

Figure F.3.3-2, Common Ada construct run time overhead. 
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3.2.2 Procedure Call 

Figure F.3.3-3 shows the run time overhead for procedure calls. 

NUHBER OF 
PARAMETERS 

0 

1 
1 
1 

PARAMETER ACWADE CALL OVERHEAD 
TYPE (microsec/call) 

average low high 

1 (C calls C) IN 
1 (Ada calls C) IN 

- 13/31 13/31 13/31 

IN 17/37 16/36 17/37 
OUT 16/37 16/37 16/37 
INOUT 20/40 19/40 20/40 

10 
10 
10 

IN 
OUT 
INOUT 

13/NA 13/NA 14/NA 
15/NA 15/NA 16/NA 

56/89 
55/89 ~ 

86/121 

56/89 56/172 
55/89 55/90 
86/121 86/124 

10 element array IN 14/33 14/33 14/34 
10 element array OUT 14/34 14/33 14/35 
10 element array INOUT 14/34 14/33 14/35 

100 element array IN 14/33 14/33 14/33 

1000 element array IN 14/34 14/34 14/34 

10000 element array IN 14/NA 14/NA 14/NA 

Figure F.3.3-3, Procedure Call Overhead. 

3.2.3 Hemory Allocation 

Figure F.3.3-4 shows the overhead measured for dynamic memory 
allocation. 

NUHBER OF SIZE OF ACS/ADE ALLOCATION OVERHEAD 
BUFFERS BUFFERS (millisec/allocation) 

(by t-1 average low high 

100 
500 
1000 
1000 

1000 
lo00 
100 
500 

0.9/5 .O 0.814.0 1.2/5.0 
2.9/4.6 3.614.6 2.8/4.6 
0.2/1.5 0.2/1.5 0.2/1.5 
6.4/4.7 6.514.6 6.2/4.9 

Figure F.3.3-4, Dynamic Hemory Allocation. 
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3.2.4 Sequential File I O  

Figure F.3.3-5 shows the run time overhead measured for sequential IO. 

RECORD SIZE ACS/ADE IO TIMES 

(Bytes) (milliseconds/read) (milliseconds/write) 

average low high average low high 

4 0.6/7 0.6/7 0.617 0.5/5 0.5/5 0.5/5 
600 4.0/50 3.0/50 5.0/50 11/120 8.0/120 13/120 
10000 120/130 100/130 140/130 340/280 300/280 400/280 

Figure F.3.3-5, Sequential IO. 

3.2.5 Tasking 

Figure F.3.3-6 shows the run time overhead measured for a rendezvous 
between 2 tasks. 

NUMBER OF 
PARAMETERS 

PARAMETER ACS/ADE RENDEZVOUS OVERHEAD 
TYPE (millisedrendezvous) 

average low high 

0 - 1.8/11 1.8/11 1.8/12 

1 
1 

IN 1.8/11 1.8/11 1.8/11 
ACCESS 1.8/11 1.8/11 1.8/11 

10 IN 1.8/12 1.8112 1.9/12 

10 element array IN 
100 element array IN 

1000 element array I N  

1.8/11 1.8/11 1.8/11 
1.9/12 2.0/12 2.0/12 

3.6/12 3.4/12 4.0/13 

lk element array INOUT 3.4/13 3.3113 3.6/13 

Figure F.3.3-6, Rendezvous Overhead. 
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Figure F.3.3-7 shows the run time overhead measured for 
activation. 

dynamic task 

ACS/ADE TASK ACTIVATION OVERHEAD 
(milliseconds/activation) 

average low high 

6.2114 6.0/14 6.4/14 

Figure F.3.3-7, Task Activation Overhead. 

Figure F.3.3-8 shows the run time measured for reading, processing and 
writing number of 600 bytes (NASCOH) and 10 000 bytes records (BIG 
BLOCKS) using tasking (PARALLEL) or not (SEkAL). Refer to the 
description of PAR - BIG and SER-BIG given previously for details. 

a 

PROCESSING ACS/ADE TOTAL EXECUTION TIHE 
MODE (seconds) 

Two CONTROLLERS: 

NASCOH BLOCKS 
NASCOH BLOCKS 

BIG BLOCKS 
BIG BLOCKS 

average low high 

SERIAL 3.7/NA 3.4/NA 3.9/NA 
PARALLEL 4.1/NA 3.9/NA 4.4/NA 

SERIAL 6.6/NA 6.4/NA 6.8/NA 
PARALLEL 4.5/NA 4.3/NA 4.8/NA 

ONE CONTROLLER: 

BIG BLOCKS SERIAL 7.5/NA 7.3/NA 7.7/NA 
BIG BLOCKS PARALLEL 5.4/NA 5.2/NA 5.6/NA 

NASCOH BLOCKS SERIAL NA/14 NA/14 NA/14 
NASCOH BLOCKS PARALLEL NA/ 16 NA/16 NA/16 

Figure F.3.3-8, Parallel Processing test. 

Our results, obtained with the ACS, show that when separate 
controllers are used for the input and the output, parallelism is 
highest, allowing the PAR BIG multi-tasking program to run than 
24% faster that its seriai counterpart. 

Excellent buffering by the OS however, makes the serial program for 
NASCOH blocks (SER - NB) run 10% faster that its multi-tasking 
counterpart. 

more 

Lack of time and numerous problems with an unfamiliar environment 
not allow us to run PAR-BIG on the ADE. 

did 
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3.2.6 An Interesting Math Routine 

In Reference 3, it was shown that for two routines accessing an array 
in a stride and non-stride manner, the F77 compilers produced 
significantly slower code than the VAX FORTRAN and that all of the VMS 
Pascal compilers considered generated very inefficient code. 

Our results, presented in figure F.3.3-9, show that the VAX Ada code 
for this test is not as efficient as the VAX FORTRAN code (execution 
time for VAX FORTRAN is about half that for VAX Ada). This result 
contradicts our own previous experience (see Reference 1) and the 
results of other groups. DEC Ada is often found to be faster than DEC 
FORTRAN V4.2 but we observe that DEC FORTRAN V4.3 produces 
significantly faster code and that the ACS optimizer can be improved. 
We hope that DEC Ada will benefit from the progress made for DEC 
FORTRAN. 

ACS on VAX 111785 CPU time 
(seconds) 

50 100 150 200 
ITER- ITER- ITER- ITER- 
ATIONS ATIONS ATIONS ATIONS 
---_-- ------ ------ ------ 

STRIDING : 
VAX FORTRAN (V4.3) 0.3 1.8 6.5 15.9 
VAX ADA (V1 .O) 0.4 3.7 13.5 38.0 

NON-STRIDING: 
VAX FORTRAN (V4.3) 0.3 2.4 8.8 25.0 
VAX ADA (V1.0) 0.3 2.8 10.2 26.9 

Figure F.3.3-9, Array Reference Benchmark Execution Times. 

4 CONCLUSION 

In general, the ACS is a reasonable system to work with. The 
following positive comments can be made: 

- The ACS operates in a logical, easy to comprehend manner. 
When assistance is required, documentation on operating the 
ACS is complete, accurate, and easy to use. On-line help is 
available. 

- The LRM is generously supplemented with text and examples 
specific to the DEC implementation. 
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- The ACS is well integrated into the DEC software development 
and run-time environment. A run-time reference manual 
provides practical information about internal details of the 
DEC implementation and how Ada interfaces to VHS and other 
high-level languages. 

- Compilation speed is rapid enough for serious software 
development (at least on a VAX-111785). 

While ACS disk space requirements (per user library unit) are 
high, "garbage" files, necessary to track compilation units, 
were fewer than on ADE and were confined to the library 
directory, rather than cluttering the user's working 
directory. 

- 

- Run-time error messages were excellent. They were generally 
very specific about the true nature of the problem and 
provided the W S  standard trace back information. 

The following negative comments can be made about the ACS: 

- The Ada rendezvous mechanism, which will be critical to HSOCC 
realtime applications, incurred relatively high overhead. 

- The ACS requires large amounts of disk space to maintain a 
user library. 

- In the single direct comparison between VAX Ada and VAX 
FORTRAN (ARRAY REF), our results suggest that in spite of its 
overall good quality, the DEC ACS code generator can be 
improved. 

- While the information contained in compiler error messages 
usually identifies the offending line of code and the nature 
of the error, the messages themselves tend to be verbose and 
poorly worded. Much effort is required to extract the 
information from the message. 

The following positive comments can be made about the ADE: 

1. The ADE feature.s a more extensive set of tools than the ACS 
(e.g., a pretty printer). 

2. The library manager can produce very useful cross reference 
reports. 

3. The symbolic debugger is friendly and more mature than 
systems' debuggers. 

other 
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4. The ADE features an impressive number of packages (e.g., 
BIT OPS to alleviate the lack of representation clauses, 
C-NT EXCEPTION ,to help determine the origin of an 
exception) that would help alleviate some of the problems we 
mentioned. 

5. Overall, the ADE generated less efficient code than the ACS 
but in a few cases, when the difference in CPU speed is 
accounted for, the ADE generated code of equal or better 
quality . 

The following negative comments can be made about the ADE: 

1. Run-time error messages were terrible. Frequently, system 
limits are exceeded during program elaboration. When this 
happens, the user is either presented with Wnhandled 
exception in library unit prog", or "Constraint error in unit 
main", and no additional information. 

2. The compiler required a pragma or a compile switch to 
explicitly declare a procedure to be the main program. The 
concept is not part of the L R M  and should not be necessary. 

3. Compilation times were very slow, even considering the fact 
that the MV/4000 is only a 0.6 MIPS machine. 

4. PAR NB contained code which assigned an array to an array 
wi tE an explicit type conversion (the arrays were declared as 
different types). The DG compiler generated bad code which 
caused the program to hard abort directly to the operating 
system with no Ada exception raised. PAR - NB was recoded to 
avoid the type conversion. 

5. PAR - BIG never ran successfully on the MV/4000. An exception 
was raised the first time that a read was attempted on its 
input file. The reason for the exception was not apparent. 
SER BIG did not have any problems reading the file. PAR - BIG 
worEed correctly on the VAX. 

6. The ADE doesn't support storage of 8-bit integers. It uses 
32-bits for all integer variables, ignoring length 
representation clauses. In order to compare ADE IO benchmark 
results to ACS results, programs were modified on the MV/4000 
to ensure that buffers were the same number of bytes. 

7. There is no ADE compiler switch to turn off optimization. 
Such a switch is frequently necessary when working with 
symbolic debuggers and would have been useful in the 
benchmarking process. 
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8. 

9. 

10. 

11. 

12. 

The user's guide was rather thin and did not provide much 
insight into the ADE implementation of the Ada language. 

The ADE LRM documentation did not include any ADE specific 
description or examples. 

Some of the library files that ADE needs to configure 
compilation units must reside in the users working directory 
rather than in the library directory. Users have a hard 
enough time keeping their directories free of their own 
"garbage" files without also having to worry about the ADE's. 
The names generated for the ADE files have very long and 
arcane embedded number sequences, making them unwieldy to 
deal with on an individual basis. 

The ADE makes extravagant use of disk space. 

The W/4000 text editor (SED) didn't seem to us as friendly 
as the VU'S (ED"). However, a colleague demonstrated a very 
impressive Ada frame driven editor the he built using SLATE'S 
macro capability. 

Overall, the ADE is usable for investigating the Ada language but many 
improvements are needed before it can be used as a production 
compiler. 

4 .1  For More Information 

Two reports, available from the authors, document the suite and the 
results of the comparison between DEC's ACS and DG's ADE: 

o An - Evaluation -- Suite for - Ada Compilers, Century Computing, 
Inc., Revision A, March 1986. 

o A Comparison of the DEC Ada Compilation System and the DG Ada 
Development Environment, Century Computing, Inc., Revision A, 
March 1986. 

- ---- ---- 

The source code for the suite and the RUNOFF source file for the 
reports are also available from the authors on a W S  BACKUP format 
tape. 
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